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A calculation of symmetric resonant charge exchange cross sections has been made for a selection of atoms
in the velocity range where the impact parameter method is applicable. Cross sections for other atoms can
be cst_imalcd by interpolating in terms of their ionization potentials. The results are in fair agreement with
experiment. A similar calculation has been attempted for asymmetric nonresonant charge exchange proc-
esses. The approximations used are more restrictive in this calculation, the calculations being only semi-
quantitative in nature. The cross section of an asymmetric charge exchange process is determined in terms
of the AE of the reaction and the “average” ionization potential of the two atoms. The results are qualita-
tively in agreement with experiment. A very brief discussion of approaches for extrapolating data to lower
velocities, where the rectilinear orbit impact parameter method is not applicable, is given.

I. INTRODUCTION

THE charge transfer processes we consider are sym-
metric resonant,

A+ATDATHA, (1)
and asymmetric nonresonant,
A+Br—A*+B4AL, (2)

where AE is the difference in ionization potentials of B
and A. Process (1) has been the subject of intensive
research, and a large number of theoretical papers
dealing with such reactions have been published. No
important contributions to the theory of process (1)
are made here. Instead, our purpose is to develop an
improved a priori calculation of cross sections for a
wide variety of processes (1) in terms of theory that is
already available. Process (2) has been considered in
only a relatively few instances, and because of the lack
of an available detailed theory, both conceptual and
computational developments have been attempted.

The calculations are based on several approximations
which are explicitly stated. No adjustable paramcters
are involved, and the a priori computations are judged
on the basis of a comparison with available cxperi-
mental data. In some cases the absolute agreement may
be poor. However, it is felt that the general dependence
of cross sections for processes (1) and (2) on ion veloc-
ity is correctly predicted in this paper. It is hoped that
such a semiquantitative characterization of a wide
range of charge-transfer processes proves to be of value,
both in leading to general understanding of the phe-
nomena and in extrapolating experimental data beyond
the range of measurements.

II. RANGES OF ION VELOCITY

It is convenient to delineate three ranges of ion veloc-
ity! for charge transfer. The most oiten considered

! This proposal was made by J. L. Magee and D. Rapp, Proc.
2nd Intern. Symp. on Electronic and Atomic Impact Phenomena,
Boulder, Colorado, June 1961.

velocity range is “intermediate,” for which the ion
velocity is high enough that Jeffrey’s approximation
can be applied to the quantum-mechanical collision
dynamics.? The result is equivalent to the semiclassical
impact-parameter method.** For “high” ion velocities
the electron orbital velocity in the atom is no longer
(relatively) large enough to use the Born-Oppenheimer
separation of electronic and atomic motions. The con-
sequence of this complication is to reduce the cross
section below that predicted by the usual impact-
parameter method. A general procedure which gives
reasonable results at high velocities, and which reduces
to the usual impact-parameter treatment at inter-
mediate velocities, has been proposed® and recently
applied.® The “high” and “intermediate” regions over-
lap at about v=10% cm/sec. We confine most of our
attention to velocities below this value and do not
utilize the methods developed for the “‘high” velocity
region. At “low” velocities, Jefirey’s approximation
(for high phase shifts) cannot be applied since only the
low phase shifts are of importance. Only a rigorous
wave-mechanical treatment is valid. However, if a
semiclassical method is to be used in this region for
approximate calculations, it should take into account
the curved classical orbits instead of assuming recti-
linear orbits as in the usual impact-parameter method.!
Since the long-range force between an ion and atom is
attractive, such a method tends to make the cross
section higher than that predicted by the usual impact-
parameter method. The “dividing line” between “low”
and “intermediate” velocity regions varies from case
to case. An approximate analysis given in Sec. VI leads
to roughly (10%/u!) cm/sec, with u the reduced mass (in
amu) of the collision pair. In this paper we mainly
consider velocities in excess of this value. The “low”
2 D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy.
Soc. (London) A216, 437 (1953).
3 E. F. Gurnee and J. L. Magee, J. Chem. Phys. 26, 1237 (1937).
+ K. Takayanagi, Repts. Progr. Saitama Univ. All, 33 (1953).
*D. R. Bates and E{ McCarrol, Proc. Roy. Soc. (London)

A245, 175 (1958).
6 R. McCarrol, reference 1.
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Fic. 1. (a) The function A (b, v) that occurs in Eq. (11). (b)
The function P (b, v) =sin*[A (b, v) ] showing the probability of
charge exchange vs impact parameter at a fixed ion velocity.
The approximation of Eq. (12) is shown by the dotted line.

velocity region is discussed only briefly in a separate
section.

III. SYMMETRIC RESONANT CHARGE TRANSFER

The expression for the cross section for symmetric
charge transfer in the “intermediate” velocity region
has been derived independently by a number of authors.
The final result is that the probability of charge transfer
in a collision with velocity v and impact parameter b is
given bhy™"

+eo
P(b,v)= sin‘-‘[/

This expression is derived from an analysis of the As*
collision complex, formed from A*+-A, as a one-electron
problem. In other words, A is considered to be
(A+4¢7), and At is a point center of positive charge.
The result of this assumption is that the nonstationary
state (which represents the collision) can be expressed
in terms of symmetric and antisymmetric stationary
states, with energies £, and E,, respectively. The cross
section is then calculated from

2hw

E.,—E,)dx .
( ¢ \] 3)

o(t) =2r f “P(b, v)bdb. (4)

0

The calculation of ¢ for any substance depends only

7 References 2-4 are but a few of the many available papers in
this connection.

$D. Rapp and I. B. Ortenburger, J. Chem. Phys. 33, 1230
(1960).
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on (£,— E,) along the collision orbit x. Since (£,— E;)
depends only on R, the internuclear separation of A
and A, and R*=2x*+b% the determination of (£.— L)
vs R is the only unknown in the calculation. This quan-
tity can only be calculated accurately from fundamental
wave mechanics for Hat.? Wave-mechanical calcula-
tions for Hes* have also been made, though_they are
not as accurate. These calculations of (£,— E.) have
been used in Egs. (3) and (4) for the processes'®!

Ht+H—-H+H*,
Het+He—He+Het,

(3)
(6)

and the results will be shown in Figs. 3(a) and (b) as
curves A and M, respectively.

For more complex reactants, wave-mechanical calcu-
lations are too difficult. Several approaches, in terms
of Slater orbitals,? hydrogenic orbitals,® and semi-
empirical orbitals'® have been proposed. We adopt
the latter procedure. The one-electron wave function
for (At+e) is chosen as'

¥(r) = (vad)}(1/13.6)¥* exp[ — (1/13.6)¥/ac], (7)

in which ao is the Bohr radius, I is the ionization po-
tential of A in electron volts, and 7 is the separation of
At from e~. For H*(1s), I=13.6, and y(r) reduces to
the accurate function ay'z~4exp(—r/ao). For atoms
other than H, this expression is a gross approximation,
especially when the outer electron is not in an s state.
However it does roughly correlate the size of an orbital
with the ionization potential, which is sufficient for our
approximate calculations. For R/a>>1 the (E.—E,)
calculated for Ayt from the wave function in Eq. (7) is

(E,— E.) =2I(R/as) exp[— (1/13.6)!R/an]. (8)

For Hat, this reduces to the LCAO result,% 27.2(R/aq)
exp(—R/as) eV. The complete characteristics of Ay*
are thus expressed in terms of the ionization potential
of A. While Eq. (8) gives the plausible result that a
higher I gives rise to a smaller range interaction, one
must not lose sight of the great oversimplification in-
volved in this expression. Iovitsu and Pallas included
an empirically adjusted parameter « in their exponent,
which we omit because we wish to work on a completely
a priori basis.

To obtain ¢ by applying Eq. (8) to Egs. (3) and (4),
one must evaluate the integral in

P(b,v)= sin’-’[+a(—1{) (a24-0%)}

—w \dphv
X exp[— (1/13.6)}(a*+b%)V/ayJdx. (9)

2D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans.
Roy. Soc. A246, 215 (1953).

10 B. L. Moisevitch, Proc. Phys. Soc.
(1956).

1T, J. M. Boyd and A. Dalgarno, Proc. Phys. Soc. (London)
A72, 694 (1938).

12 A, Dalgarno, Phil. Trans. Roy. Soc. A250, 426 (1938).

151, Popescu lovitsu and N. Tonescu-Pallas, Soviet Phys.—
Tech. Phys. 4, 781 (1960).

(London) A69, 653
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This integral has been evaluated by Dalgarno,” the
result being

SR o e il ﬂb_[ . Kl(vb/do)]}

I (b, 'L) s {aofu' K(;(‘Yb/llo) +——-('Yb/a0) (10)
in which y= (1/13.6)}, and K, and K, are Bessel func-
tions of the second kind, of zero- and first-order, re-
spectively. Since Eq. (8) is only a reasonable approxi-
mation for (yR/ao)>>1, Eq. (10) should only be ap-
plied in the range (vb/ae)>>1, for which the asymptotic
forms of the Bessel functions' may be used. The result is

L i 1
P(b,v) =sin'~'[(2—1r) <i> b (1+u_u) cx[)(—z—q)‘l. (11)
yao/ \hv vb ao

The form of the argument of the sine function in Eq.
(11), to be denoted as A (b, v), is shown in Tig. 1(a).
The probability of charge transfer, P(b, v)=
sin?[ 4 (b, v)] is shown in Fig. 1(b). The probability
oscillates between 0 and 1 at small b, finally decaying
to zero at large b. In the spirit of the approximate ap-
proach used in the present calculation, we replace this
oscillating function by the constant value 0.5 from

| P
2 4

N PR P P |
2 a 70 2 4
v lem/sec)

1l
7 0

FiG. 2. Calculated cross sections for resonant charge exchange
between monatomic ions and their parent gases. Interpolation can
be made for other gases in terms of their ionization potentials
(listed in Table I).

1 A, Erdelyi, W. Magnus, I. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions, Bateman Manuscript Project
(McGraw-Hill Book Company, Inc., New York, 1954), Vol. I,
p. 86.
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Tasee 1. Tonization potentials used in preparation of Fig. 2.

Atom I (eV)
He 24.6
Ne 21.6
Ar 15.8
Kr 14.0
H 13.6
Xe 12.1
Hg 10.4
K 4.1

Cs 3.9

5=0 to the point by, where P(by, v) =0.25. The choice
of this point is somewhat arbitrary, but the dotted line
in Fig. 1(b) representing the assumption made in the
present choice shows it is roughly equivalent to ap-
proximating the “tail” of P (b, v) by the shaded area.
The cross section for charge exchange is then simply

o=3mbs. (12)
To find b; we use the equality
2w \i( 1 b
A(by, )= [(—1) (—)bﬂ(l—i—-a—o) cxp(—u)]= :
Yao. ho vb ay 6
(13)

For (ybi/as)>>1, the variation of the exponential
exp(—vbi/as) with by in Eq. (13) is much greater than
the variations of the pre-exponential term b}
[1+4(ao/vb1) . To obtain the dependence of by on v for
limited ranges of v, one may replace the pre-exponential
factors of by by average values by, and only scek the
variation due to the exponential. Upon rearranging,
the result is

ot= (3m) = — (37)"(ao/7) Inv+(37)*(a0/27)

%] 2
X 1n[m” ({ (1+“—f) ] (14)
Tyao\R* by

This result has the well-known form!*:*

ol= —k Invt-ke

(15)

which has been used for extrapolating charge-transfer
data over velocity ranges.” It is noteworthy that over
wide ranges of v, b, varies significantly, and one cannot
choose an average b for the pre-exponential terms. The
simple relation given in Eq. (15) is then not obeyed.
For wide velocity ranges one can calculate ¢ vs v for
any atom with only a knowledge of its ionization po-
tential, by solving for &, in Eq. (14). Results of such a
calculation are presented for a selection of atoms in
Fig. 2 as a composite plot of ¢! vs Inv. The dependence
of o on I can be seen by comparing ¢! in Fig. 2 with the
jonization potentials listed in Table L.
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He + Ho™—aHo 4 Hg

(8)
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Fi6. 3(a)~ (i) The calculated o (v) curves from Fig. 2, individually labeled “RF”, are compared with available experimental references
listed in Table II. Other theoretical calculations are presented in some cases (solid lines) and are labeled by letters according to the
theoretical references in Table II.

Before comparing these calculations with the avail- only the reaction

able experimental data, there is a further stipulation G, LA ‘. Wi

to be made. Equation (3) and the entire development At (i) +A(J)—A(G) +A* () (16)
leading to Fig. 2, are based upon a two-state approxi- is theoretically calculated, whereas actual experiments
mation. That is, it is assumed that in a collision of an possibly involve charge exchange with excitation such
ion At in its lowest state (i) with A in its lowest state as
(7), the collision complex As+ may be treated analo- A* () A ()—A (B) LA+ +AE (17

) £ / 2 7

gously to Hy* which has gerade and ungerade states ) +AG) (B)+A%(0+ )
that go asymptotically to {A*(i)+A(j)}. Nonadia- which though nonresonant, may have considerable
batic transitions to higher As* states resulting in  cross sections at high energies (see Sec. IV). Further-
products such as {A*(k)+A(l)} are neglected. Thus, more, the initial ion beams used in experiments may
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TasLE II. Reference for curves presented in Figs. 3(a)-(i).

(a) Experimental references
(1) J. P. Keene, Phil. Mag. 40, 369 (1949).

(2) H. B. Gilbody and J. B. Hasted, Proc. Roy. Soc.
(London) A238, 334 (1956).

(3) N. V. Fedorenko, V. V. Afrosimov and D. M. Ka-
minker, J. Tech. Phys. (U.S.S.R.) 26, 1861 (1957).

(4) C. F. Stier and C. F. Barnett, Phys. Rev. 109, 385
(1938).

(5) R. A. Smith, Proc. Cambridge Phil. Soc. 30, 21 (1934)
(6) ¥. Wolf, Ann. Physik 30, 21 (1937).
(7) A. Rostagni, Nuovo cimento 15, 117 (1939).

(8) N. Dallaporta and G. Bonfiglioli, Comment. Pontif.
Acad. Sci. 7, 141 (1943).

(9) S. N. Ghosh and W. F. Sheridan, J. Chem. Phys. 26,
480 (1957).

(10) { B. Hasted, Proc. Roy. Soc. (London) A2035, 421
1951).

(11) B. Ziegler, Z. Physik 136, 108 (19533).

(12) J. B. Hasted and J. B. H. Stedeford, Proc. Roy. Soc.
(London) A227, 466 (1955).

R. F. Potter, J. Chem. Phys. 22, 974 (1954).
I. P. Flaks and E. S. Solov'ev, Soviet Phys.—Tech.
Phys. 3, 564 (1938).

(15) J. A. Dillon, Jr., W. F. Sheridan, H. D. Edwards, and
S. N. Ghosh, J. Chem. Phys. 23, 776 (1955).

(13)
(14)

(16) W. H. Cramer, J. Chem. Phys. 30, 641 (1959).

(17) P. R. Jones, I'. B. Ziemba, H. A. Moses and E. Ever-
hart, Phys. Rev. 113, 182 (1939).

(18) R. M. Kushnir, B. M. Palyukh, and L. A. Sena, Bull.
Acad. Sci. U.S.S.R., Phys. Ser. 23, 995 (1959).

(19) S. N. Ghosh, et al., Geophysical Research Paper No. 48,

AirForce Cambridge Rescarch Center, Bedford, Massa-
chusetts.

W. L. Fite, R. T. Brackman, and W. R. Snow, Phys.
Rev. 112, 1161 (1938).

(21) J. B. Hasted, Proc. Roy. Soc. (London) A212, 235
(1952).

(20)

(b) Theoretical references

(M) B. L. Moiseiwitsch, Proc. Phys. Soc. (London) A69,
653 (1936).

(A) T. J. M. Boyd and A. Dalgarno, Proc. Phys. Soc.
(London) A72, 694 (1938).

(IP) I. Popescu-Tovitsu and N. Tonescu-Pallas, Soviet Phys.
—Tech. Phys. 4, 781 (1960).

contain excited states of A+, which could react analo-
gously to reactions (16) and (17), but involving other
states. This is particularly true of the rare-gas ions
from Ne* on up, where the spin-orbit interaction results
in appreciable splitting in energy between the 7; and
Py states of the ion. For such a rare-gas ion system, the
present calculations only account for reactions of the

D. RAPP AND W.
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type
A+(Py) +A—A+AH(P)), (18)

A+(Py) +A—A+A(P)), (19)

whereas the reactions in which A*(Py)5A* () may
possibly be of considerable importance in some energy
ranges.

The calculations shown in Fig. 2 are compared with
the experimental cross sections, reaction by reaction,
as solid curves RF in Figs. 3(a)—(i). Since it is difficult
to select which data are most reliable, all available data
are presented as dotted lines referenced according to
Table II. In general the elementary theory described
in this paper gives the correct qualitative behavior of
the cross sections as functions of ion velocity. The cal-
culations tend to lie below the experimental data, and
this may be due to several reasons. One explanation is
that Eq. (8) probably tends to underestimate the
interaction, since it certainly underestimates the inter-
action for Hat? and Hes*.!° Use of more accurate inter-
actions in these simple cases®!! leads to the cross-
section curves A and M in Figs. 3(a) and (b), respec-
tively. These curves lie above those based on Eq. (8)
as the interaction. Contribution of reactions of type
(17) would also lead to experimental cross sections
larger than those calculated only for reaction (16). If
one were assured that reaction (16) predominated in
the experiments, one could work ‘‘backwards” and
determine the interaction from the observed velocity
dependence of the cross section.”~7

In a previous calculation,”® an attempt to do this
was made by the insertion of an empirically determined
parameter “a’ in the exponent of Eq. (8). Tovitsu and
Tonescu-Pallas™® used a wave-mechanical method which
for “intermediate” velocities is analogous to the semi-
classical procedure used in the present paper.®# How-
ever, in their final result they obtained a cross section
of the form given in Eq. (15) for all velocities. The
proper result based on Eq. (8) as the interaction leads
to Eq. (14), which does not produce the form given in
Eq. (15) over wide velocity ranges. It is difficult to
compare the two methods exactly, but it is apparent
that they made an assumption which is analogous to
setting by constant for all ion velocities. Furthermore,
in obtaining the empirical parameter «, they made a
trivial algebraic error which leads to serious numerical
conflicts. On their graphs with ordinate labeled wlo?,
they apparently plotted their theoretical curve cor-
rectly, but plotted values of ¢} for the high-energy ex-
perimental data. As a result, the data shown in their
graphs should be multiplied by #!, which would lead
to a different value for their parameter . Figures 3(a)-
(f) show how their calculations, labeled “IP,” fall

BE. A. Mason and J. T. Vanderslice, J. Chem. Phys. 29,
361 (1938); 30, 599 (1959).

16\, H. Cramer, and J. H. Simons, J. Chem. Phys. 26, 1272
(1957).

17W. H. Cramer, J. Chem. Phys. 28, 688 (1938).
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below ours, labeled RF, at the higher energies because
of this mistake.

The comparison made between theory and experi-
ment in Figs. 3(a)-(i) leads to the general conclusion
that most of the data apparently can be correlated in
terms of a simple two-state theory, and that Fig. 2 is
a useful result for rough predictions of atomic charge-
transfer cross sections in the “intermediate” velocity
range. For atoms other than those listed, one can inter-
polate in terms of their ionization potentials.

IV. ASYMMETRIC CHARGE TRANSFER
(THE BASIC EQUATIONS)

The semiclassical treatment of asymmetric charge
transfer in the intermediate velocity range has been
discussed previously.®417 Procedures in terms of a two-
state approximation analogous to symmetric charge
transfer have been started. However the theory is not
complete, and further discussion is required before a
quantitative calculation can be attempted. In asym-
metric charge transfer, further elaboration of statistical
considerations, and of the approximate substitution of
atomic orbitals for molecular orbitals is required. These
considerations present no problems in the symmetric
case. The purpose of the present section is to discuss
three basic aspects of the theory of asymmetric charge
transfer; statistical considerations, the approximate
substitution of atomic orbitals for molecular orbitals in
the expansion of the total wave function, and the rela-
tionship of the theory to the requirements of detailed
balance. The actual calculation of cross sections from
these general equations is left for Sec. V.

We first discuss the electronic states involved in the
charge transfer process, and show the effects of the
symmetries of these states. In the symmetric resonant
process [Eq. (1)], even though there are two As*
states involved in the collision there is only one asymp-
totic state at Raay= o, A*+A. However, in the non-
resonant reaction between particular electronic states

A*(i) +B(j) A (k) +B*(1), (20)

there are two different asymptotic states, (A++B)
and (A+B*). Each of these are asymptotic forms of
different electronic states of AB+. Charge transfer re-
quires an electronic transition from one electronic state
to the other. Since charge transfer collisions in the
“intermediate” velocity region involve relatively large
impact parameters, we assume that angular momentum
and spin are probably conserved in reaction (20). Thus,
only transitions between states of AB* with identical
symmetry are considered. One need, therefore, only
consider the two electronic states of AB* with identical
symmetry which go to (A*+B) and (A+B*) as
asymptotic forms. One thereby assumes allowed reac-
tions analogous to that given by Eq. (20), but involving
excited states of products such as

A1) +B(j)—A(ms=k) +B* (n=l), (21)

BETWEEN
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have such high values of | AE | that they are negligible.
That is, if the electronic energy level of {A(m)+B*(n) }
lies considerably above that of {A(k)+B*(l)}, one
may hope that the states of AB* for which they are
asymptotic lie far enough apart in potential energy not
to interact appreciably. This is what we mean by a
“two-state approximation.”

When A*(i) and B(j) collide, several states of AB*
may be formed. The probability that any state may be
formed is proportional to its statistical weight. Only
those states with identical symmetry with

{A(R)+B*()}

can produce charge transfer according to reaction (20),
so this reaction is forbidden by symmetry considera-
tions in a certain fraction of the collisions. The fraction
of collisions that produce AB+ states which allow charge
transfer will be denoted as f, the statistical weight
factor. The ratio fi/f» for forward and backward reac-
tions in Eq. (20) is the pre-exponential factor of the
equilibrium constant for the reactions.!® In comparing
theoretical cross sections with experiment, one must
multiply the calculated cross section based on the two-
state approximation by f before comparison with ex-
periment. In a previous paper,® a brief application of
these symmetry principles was given for the charge
transfer reactions of N+ and O+ with H. A more easily
visualized example is provided by the reactions

Het(2S) +H(*S)sHe('S) +Ht. (22)

There are two HeH* states which go asymptotically to
{Het(%.S)+H(®S) }, and they have symmetries 32 and
'Z. There is one state which goes to {He('S)+Ht},
which is 'Z. Considering the backward reaction, a colli-
sion between He('S) and H*, can only produce a =
transient state of HeH*, and charge transfer must occur
to the other 'Z state of HeH* which goes asymptotically
to {Het(%S)+H(2S)}. Nevertheless, the statistical
factor f» for the backward reaction is unity because all
collisions can produce reaction. In the forward reaction,
1 of the collisions between Het(2S) and H(2S) produce
!Z states which can lead to charge transfer, whereas §
of the collisions produce 3Z states which cannot lead to
charge transfer. Thus f; for the forward reaction is §.
Bates and Lynn'® have pointed out that there are
two ways of making the “two-state approximation,”
involving expansions of the total wave function in terms
of either atomic or molecular orbitals. In each case the
expansion is held to two terms, corresponding to re-
actants and products, the respective time-dependent
coefficients determining the probability of finding the
system in each state. Since one does start out with
reactants before collision, the initial condition is that

8 The equilibrium constant for reaction (21) is f,/fae” AEIRT,
where in more usual terms fi/fa= (gagu*/ga*gn), and the g’s are
statistical weights of the atoms.

¥ D. R. Bates and N. Lynn, Proc. Roy. Soc. (London) A253,
141 (1959).
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one coefficient is unity and the other zero at (= —co.
The problem is then to calculate the other coefficient
after collision, at {=-}, from the time-dependent
Schroedinger equation. In symmetric resonant charge
transfer, similar expansions are used. It may be
shown®%% that use of the molecular wave functions
leads to Eq. (3), whereas the atomic orbitals lead to
Eq. (3) with (E,— E.) replaced by the LCAO approxi-
mation to this quantity. The connection between the
molecular and atomic orbital approaches in asymmetric
charge transfer is not so easily obtained.

The proper approach involves writing the total wave
function as a linear combination of molecular orbitals
of AB* formed in the collision of A* with

W= (1) DAAPD (R) exp[ —i EAABH (R)1/h]
+cp (1) DB (R) exp[—iEpABH (R)t/R], (23)

in which ®;ABH(R) is the molecular orbital of AB*
which goes to ¢; as R—=, and E;APP (R) is the energy
of this state (which goes to ¢; as R— ). Since Eq. (23)
leads to differential equations difficult to solve, we
follow Gurnee and Magee,® and utilize the zeroth-order
approximation of replacing the molecular wave func-
tions and energies by atomic orbitals and atomic ener-
gies. This approximation is only reasonable at large
internuclear separations.

The asymmetric charge-transfer process Eq. (20),
is written as

A*++ (Bt+4e)—(At4e) +BH

In this simple picture, there is a single valence electron
which can be attached to either nucleus, A* or B*. The
total wave function for the electron in the combined
field of A+ and Bt is written as

W=c(1)pa(rs) exp(—iwal) +cu(t)pn(re) exp(—iwsl),
(25)

(24)

where the ¢’s are time-dependent coefficients of the ex-
pansion, ¢4 and ¢p are atomic orbitals for the electron
on nuclei A+ and B*, ry and rp are the distances of the
electron from At and B*, w=¢/h, and ex and e are the
energies (ionization potentials) of A and B in states
¢a and ¢, respectively. These states are solutions of
the atomic Schrodinger equations

C(=22/2m,) V4V (r;) Jbi= eips,

in which j can either be A or B, and V(ra) is the effec-
tive potential binding e~ to A*. The time-dependent
wave equation for the electron in the presence of A*
and B* is

[(— h'-‘/Zm,) V2+1'A ("A) + Vn(fu) :]‘I/= ﬁi(a‘l’/a/) . (27)

The collision coordinates are the same as those dis-
cussed in Sec. I for symmetric charge transfer. The
classical trajectory x=1f relates the relative motion of

(26)

2T, Holstein, J. Phys. Chem. 56, 832 (1952).

D. RAPP AND W. E.

FRANCIS

A+ and B*, and for any value of x= (R*—8%)}, rx ar
rp are not independent. Use of Eq. (25) for ¥ in E
(27) leads to an equation in ca, ¢, ¢ and ég. Th
equation relates the coefficients ¢x and ¢ during tl
collision under the action of the perturbation V4 (a
suming the electron was initially on B*). When th
equation is multiplied alternately by ¢4 and ¢g, ar
integrated over-all space, two coupled differenti
(with respect to time) equations in ¢x and cp a
obtained

C(Ve)an/hJea+[(Va)an/h] exp(—iwt)cn
=i[éa+F exp(—icwt)ép], (2
[(Ve)sa/R] expliot)ca+L(Va)sn/h]cn
=i[F exp(iwt)éatép]. (2

In these equations, w=wp—wa, and integrals are ¢
fined as

(Vi) wn= [V 7)),

F= /¢A¢ndr.

These integrals are functions only of R, the internucle
separation of A* and B*, and from the classical collisi
trajectory are therefore functions only of f. Since t
probabilities of locating the electron on nuclei A* a
B* are | ca |2 and | cg |2 respectively, the initial con
tion is taken as
l‘A(—OO)=(),
cg(—»)=1,
which locates the electron on nucleus B+ before col
sion. The probability of finding the electron on nucle
A+ after collision | cx (4 ) |* multiplied by the statis
cal weight factor f, is the charge transfer probabili
P(b,v) in a collision of velocity v and impact paramet
b.
Equations (28) and (29) may be simplified to
I'l"nTln([) (’X[)(I.w/‘(,.\—{'—ﬂd[\)('n, (3
iéa=mna(t)ca+wa(t) exp(—iwt)cs, (3

in which the «’s and n’s are groupings of perturbati
integrals divided by 7:

. :lr(Vn)m —F( 1'1&5] ) :[(VA)AB_ F(Va) s
' A—F)h o (1—F)h

={(l';\)nn—1;( V.A)An] =[( Vi)aa—F (V) as
- a—-mn I ™ (A=F)&

By defining new coefficients, aa and ag, such that

t t 3
cp=dy c.\p(- i/ mdl'), CA=aa exp(—i/ nadl’
—® —® /
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Eqs. (30) and (31) are further simplified to

idp=K1(1) exp(i)ay, (32)
ida= ka(t) exp(—iQ)ag, (33)
in which
t
Qu=ait [ (n-m)r. (34)

ca |?, the probability of charge transfer

o

Since | a4 |*=
isf|aa(4)

The relationship between the quantities ki, ks, and
Q, and the potential energy curves of the molecular
AB* states (which go asymptotically to reactants and
products) is undoubtedly complex. In symmetric reso-
nant charge transfer, the atomic orbital approach leads
to equations of the form given in Eqs. (32) and (33),
except that® w=n—2=0 and xy=ke= (E,—E,). The
differential equations may then be solved exactly® to
yield Eq. (3), with P(b, v) = | ax(+ ) |3 and =2/
In the asymmetric process, a critical examination is re-
quired to find any such relationships.

For our present purpose of calculating cross sections
we need only compute the integrals in kj, ks, and Q
without considering their relationship to the potential
curves. Since Eq. (25) is only justifiable as the total
wave function at large impact parameters, the atomic
orbitals in Eq. (7) for ¢4 and ¢p are used. One can
show?! in the resonant case for ¢4 = ¢p that such orbitals
lead to the result that at large R/aq, integrals of the
type (Vi) where (j#k) are proportional to
R exp(—+vR/aq), integrals of the type (V,);; are pro-
portional to exp(—2yR/a,), and F is proportional to
R? exp(—vyR/ao). In the nonresonant case, use of Eq.
(7) with a different value for 7 for each atom leads to
more involved integrals. Some lengthy calculations
lead to the conclusion that ko= (Va)an, x1= (Vg)na,
and &>>n. Therefore &,(f) and k2(¢) have the same type
of behavior as in the resonant case. One may show that
use of the orbitals in Eq. (7) also leads to the conclusion
that for a very near-resonance in which |w—w | <
(wy or wa), ] m—mne l is also small.*® One may also show
that in the present approach |m—n| < |e«| for
R/a>>1, so that the approximation Q= is justified
in the present approximate calculation.®

L. Pauling and E. B. Wilson, Jr., Introduction to Quanium
Mechanics (McGraw-Hill Book Company, Inc., New York, 1935),
pp. 138-139.

2 In the limit wy=ws, m—n:=0 by this assumption. However,
use of more realistic orbitals would lead to 5, —»:#0 when A and
B are difierent even though w; =w,. This case of “accidental
resonance”’ is important in the reaction O'(‘S)+H(S)—
O(*P)+H* for which w;—aw: is very small.®** The contribution of
m—n2 to Q in such a process is difficult to ascertain accurately. At
very large impact parameters Q~w since m—n—0 as db—o.
Whether n —n. is still negligible at the finite impact parameters
involved in charge transfer, is subject to question.” In our ap-
proximate calculation we put 2=w for all @ and b.

% Bates and Lynn* have pointed out that in processes of the
type

AY4+B*—ATTEB,
m—mn2 may be very large compared to , leading to 2 #w. We do
not consider such processes in this paper.
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There is one further point which requires considera-
tion before we attempt to solve Eqs. (32) and (33)
subject to the assumptions made in the previous para-
graphs. The principle of detailed balance requires that
in reaction (20) for a given & and v, Py(d, v) in the
forward direction is related to Pa(b, v) in the reverse

direction by

Py(b, v)/Pa(b, ) = fi/fe (34)

Since fi and fs enter our calculation because of statistical
considerations [i.e., Pi(b, v)=fi|as(=) |*], we are
led to the following conclusion: Starting with {A*+B},
[i.e., ax(—2)=0, ap(—w)=1], the |ax(x) |* for
charge transfer to {A+B*} should be the same as
| ag(e) | for the reverse process [i.e., ax(—»)=1,
ap(—)=0]. Equations (32) and (33) do not satisfy
this requirement unless k= k2. In the present treatment
x1# k2 because®

(35)

This reflects the fact that Eq. (25) only approximates
the true total wave function. The particular choice
made in Eq. (25) becomes more inadequate for larger
nonresonances (ex—eg). The reason for this is that one
should really use Eq. (23) for the wave function of the
collision complex AB*. Since ®,ABPH(R) and
PgABH)(R) are mutually orthogonal, and are eigen-
functions of the total Hamiltonian operator [left side
of Eq. (27) ], the choice of Eq. (23) in terms of molecu-
lar orbitals leads to differential equations which do
satisfy detailed balance. Equation (23) is a “zeroth-
order” approximation in which the asymptotic forms
of ® and £ are used for finite R. The functions ¢a, ¢n
are not orthogonal, except at R= . It is this non-
orthogonality which leads to xj7 k.. One may now ask
what credence can be attached to a theory which does
not satisfy detailed balance. The answer to this question
lies in the behavior of ;AP (R), (i=A, B). At large
R, the use of ¢; instead of ®; is a good approximation,
and F in Eq. (35) is small. The discrepancy between
k1 and &g is then small. One may therefore be assured
that the calculated P(b, v) is a reasonable approxima-
tion at large b. However, since one must use Eq. (4)
for ¢, P(b, v) has to be calculated for small b also. When
the contribution to the integrand in Eq. (4) is relatively
small for small &, the theory is most adequate. Thus,
the theory works best when ¢ is large. In our calcula-
tions we utilize Eqs. (25), (32), and (33), but with an
appropriate average « used for both k; and .. In some
calculations the important range of & in Eq. (4) is
small enough that the present treatment is not strictly
applicable.®* Nevertheless reasonable qualitative agree-
ment with experiment is often found from this simple
approach.

Keeping in mind the discussion given in the previous

(V)ap—(Va)pa= (ea—en) F.

% In general, the smaller the nonresonance, and the higher the
ion velocity, the better the present theory should he.
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F16. 4. Comparison of approximations of Gurnee and Magee?
(GM) and Rosen and Zener® (RZ) with exact machine solution
(NUM) of coupled equations for charge exchange. The data and
the (GM) curve are taken from reference 8.

paragraph, we use the modified equations
iv(dap/dx) =& (x/v) exp(iwx/v)ay, (37)
iv(das/dx) = k(x/v) exp(—iwx/v)as, (38)

with & an appropriate mean of x; and ks, aa(—) =0,
ap(—»)=1, and P(b, v)=f|as(+=) |% Before at-
tempting any quantitative calculations, we shall briefly
discuss the qualitative features of Eqs. (37) and (38),
and the P(b, v) and ¢ calculated therefrom. The func-
tion [&(x/v)/v] is just like the corresponding term in
symmetric resonant charge transfer [i.e., the integrand
in Eq. (9), with 7 replaced by an appropriate mean of 74
and 7. It is seen that the particular averaging process
chosen is not as important as the value of w, so that it
suffices to say that whether one uses /4, /s, or some
mean value, the dependence of o on v is mainly deter-
mined by w, except in very large nonresonances.

The main point is that &(x/v) is a “bell-shaped”
curve with a finite maximum at x=0, and which goes
exponentially to zero at x= = . This is the interaction
causing charge transfer. For very small values of w/7,
the imaginary exponential terms in Eqs. (37) and (38)
remain essentially at unity over the entire range of x
for which « is appreciable. Under this condition, the
exponential terms may be set equal to unity and Eqs.
(37) and (38) become identical to the equations ob-
tained in the symmetric resonant case, the solution
being Eq. (3) with (£,— E.) replaced by &. For a given
o, at high enough v that (wr/7) is small, the behavior
of a(v) is then similar to ¢(v) for symmetric resonant
charge transfer (with an effective ionization potential
somewhere between 74 and 7y), namely Eq. (14). In
this velocity range, o increases with decreasing velocity
because there is more time available in the collision for
an electronic transition to occur, and wxr/v is small
enough that the transition is easily facilitated in pro-
portion to the interaction k. At lower velocities the
situation is somewhat different. Consider the case of a
very large impact parameter for which the interaction

W. E. FRANCIS

& is weak, and the transition probability is small. One
may then put ap(x)=1 for all x, and calculate the
perturbation approximation

| an(oo) [ %/::R(%) cos(‘—:—r)d.v i (39)

in which exp(—iwx/?) has been replaced by cos(wx/v)
since & is an even function of x. The function & has an
effective width in x of the order of several atomic
dimensions (i.e., several Bohr radii). Let a be such a
dimension characterizing the range of & in x.* Then as
the ion velocity is reduced to the point where (wa/v)
becomes of the order of unity, the oscillations of
cos(wx/t) begin to severely reduce | ax() |% despite
the pre-integral factor of 1/v acting weakly in the
opposite direction. At lower velocities where wa/v>>1,
| ax(o) |* falls off rapidly with decreasing v. Thus, in
between these velocity extremes, at some velocity near
where one oscillation occurs between x= —a and
x=+a, a maximum charge transfer probability is ob-
tained at large impact parameters. This determines the
condition that the maximum cross section is obtained
when

wa/V=a|AE (40)

Jhv=1,

which is in accord with the qualitative “near-adiabatic”
theory proposed by Massey.®

V. ASYMMETRIC CHARGE TRANSFER
(APPLICATIONS)

In any nonresonant charge transfer process, Eqs.
(37) and (38) must be solved to obtain P (b, v). Rosen
and Zener? have solved them for the special case where
% is of the form k; sech(kax). They have proposed that
the general form of the solution might be

ar(+=)rz*

=(sin’-’[1ﬁdl)<f_} Cowldl)e/(/_;kdl)z. (41)

Gurnee and Magee,® unaware of the paper by Rosen
and Zener,” proposed a general solution of the form

| ax(+=) o= sin’] R coswld!. (42)

—®
Bates and Lynn'” pointed out that, since Eq. (42) does
not work in the special case of &=k sech(ksx), it
could not be the correct general solution. Skinner®® did
some numerical calculations for specific (b, v) com-
binations to show that Eq. (41) is also not a general
solution for all & However, it is difficult to ascertain

% A recent examination of the available data in terms of this
conclusion leads to a “best” value of about 7 A for a. [J. B.
Hasted and A. R. Lee, University College, London (personal
communication of a preprint to be published) ].

» H. S. W. Massey, Rept. Progr. Phys. 12, 248 (1949).

27 N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).

3 B. G. Skinner, Proc. Phys. Soc. (London) A77, 551 (1961).
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from this work just how valid the approximations of
Eqs. (41) and (42) are.*® In a previous calculation,®
o(v) was calculated for

N++H—N+H* (43)

using the (poor) approximation of Eq. (42). We have
used the same & of this previous work in two new calcu-
lations, one utilizing Eq. (41), and the other a numerical
integration of Egs. (37) and (38) on a digital computer.
The results are shown in Fig. 4. It can be seen that
above the velocity corresponding to the maximum o,
all three methods coincide. At lower velocities Eq. (41)
is a much better approximation than Eq. (42). The
details are not given here, but it may be shown that the
best procedure is to fit the actual function & in any
example to a ki sech(ksx) curve, and then use the
correct solution, Eq. (41). This procedure has been
adopted in the present paper since in practice & can
only be estimated very roughly.

In the present calculation we have made assumptions
leading to

&= (I/ach) (x*+0%)} exp{ —v (2*+8%)Y/ao},

with 7 some suitable mean between I, and 7. In order
to fit this to

(44)

ko= ky sech (kox), (45)

two conditions must be made. We make the reasonable
(but arbitrary) choice: & (0) =#&(0), and

/‘ Eld.1'=fm Kodx.

The constants 4 and %k may then be determined,
leading to

k= (I/aih)b exp(—~b/av) (46a)

k=21r{2b exp (vb/ao) [Ko(vb/ao) +Ki(vb/as) / (vb/as) .
(46b)

The solution to Eqs. (37) and (38) for k=g is
| aa() |*= sin?(wky/vkaao) sech®(ww/2vks). (47)

It may be seen that this, when combined with Eqs-
(46a) and (46b), leads to

Pu(b, v) =fPy(b, v) sech®[ (wao/y?) F(yb/a0) ], (48)

in which f is the statistical factor mentioned in Sec. IV,
Py(b, v) is the probability given by Eq. (10), and

F(vb/ao) = (vb/ao) cxp(‘yb/uu)
X {Ko(vb/ao) +Ki1(vb/ao) / (vb/ao) |-

For b/ac>>1, the asymptotic forms of the Bessel func-

(49)

2 The various functions | a4 (@) [* oscillate with bwith different
frequencies, so that comparison at identical (b, v) combinations
is not as meaningful as a comparison of the integrals obtained
from Eq. (4).
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F16. 5. Functions of importance in Eq. (51). Po(b, v) is that
obtained from Eq. (11) in the resonant case. Curves A, B, and C
are the function sech? [ (w/v) (aewb/2v)}] for successively higher
(w/v). Point b, is determined by the condition that the sech?®
function is four times Py(by, v).

tions may be used,' giving
1"<'Yb/aﬂ)g(ﬂ"yb/2du) )_ (50)

For a given (w/vv), the sech function in Eq. (48)
should become “broader” in & for smaller b. Since
[F(yb/as) T determines the “breadth” of the sech
function, we make the (crude) assumption that the
asymptotic form Eq. (50) holds for all &. This is reason-
able despite the fact that Eq. (49) goes to = at b=0,
because Eq. (49) is only valid at large 4. For example,
at yb/ay<1, & cannot even be fitted to &, because &
has a minimum, whereas & has a maximum. The as-
sumption that Eq. (50) can be used whenl>vb/ay,
while poor, only leads to dubious cross sections when
the region 1>vb/a,>0 contributes greatly to the inte-
grand in Eq. (4). We therefore have the result

Po(b, v) =fPo(b, v) sech?[ (w/v) (aawb/2y)}]. (51)

To obtain ¢ from the integral in Eq. (4), consider
the diagrams shown in Fig. 5. At very high velocities
such that the adiabatic parameter p<1, the scch
function is essentially unity (curve A) over the im-
portant range of Po(b, v). Thus ¢ is simply f multiplied
by the value calculated from Eq. (14). At velocities
leading to p=1 (curve B), one can replace Py(b, v) by
1 from 0<b< by, and by 0 for b>>by. The choice of by is
made as the point * where

sech?[ (w/v) (agwby/2y)V]=4Po(by, ).

The cross section is then

(52)

a(v)= '%ffbl sech?[ (w/v) (agwd/2y)  ]2xbdb.  (53)
0

For very low velocitics where p>>1 (curve C), the
upper limit of Eq. (53) may be set equal to =, and

a(v) = (2n/a) /m(scch’u) wdu
0

=2(1.202) (27 /a%),

® See the discussion immediately following Eq. (11).

(54)
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(c)
in which a=[(#ao/2y)!(«/?v)]. Thus at low velocities,
#9(1.202) ¥t

o T (55)
™ Ay w’
We must point out that Eq. (55) is a very crude result
for two reasons. First, the region of b contributing to
the integral in Eq. (4) is small at low velocities, so that
the use of Eq. (50) for all & is not justified. Secondly,
the qualitative form of the result (i.e., o=1) is very
sensitive to assumptions made about the R dependence
of & It is only by utilizing a sech function with Eq. (50)
that we get the present result. Thus, Eq. (55) should
only be used for order-of-magnitude calculations, and
one should not seriously expect a plot of experimental
o vs ¥ to be linear.

The general result given in Eq. (53) shows ¢ to
depend on 7 (through v¥)* and w. Thus a set of related
charge transfer processes, for which the effective 7 are
about the same, have ¢(v) functions which all go to the
same limit at high » [namely the resonant o(2) for
that 7). At finite v, the difference between reactions lies
primarily in w=AE/Ah. In Fig. 6(a) we have plotted

1 Although there is some ambiguity in the choice of  in a non-
resonant process, o is not usually very dependent on this choice.
For extreme nonresonances such as

Cs+He*—He+Cs*,

the choice of I is both important and dubious, and the present
method is inadequate.
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Fic. 6. Calculated o(v) for various AFE in sets of processes
having the same v. (a), (b), (c) are for ¥'s of yme, vi, and Ye,
respectively. Note that in each case the nonresonant ¢ (v) curves
approach the corresponding resonant curve at high enough
velocities that the adiabatic parameter p=[(AE) a/kv]<1. The
dependence of o (¢) on AE is much more critical than the depend-
ence on . For processes in which the AE is large, the choice of an
effective v becomes dubious, but a value close to the lower of the
two atomic v’s seems more appropriate [see the discussion in the
paragraph preceding Eq. (3-8%.

the o(v) functions for a set of reactions with y="u.,
each curve corresponding to a different AE. Figures
6(b) and 6(c) show similar plots for y=+u and y=7i,,
respectively. We wish to stress again that the calcula-
tions become less reliable at low velocities where ¢ is
very small.

Before proceeding to compare these calculations with
experiment, we must use caution because of two com-
plications. One is that the experimental data varies
over wide limits, as the scatter in measured resonant
cross sections [Figs. 3(a)—(g) ] indicate. The other is
that the contribution of excited states, both in the
primary ion beam and in the reaction products, can
make obscure the exact reaction being measured. In
some cases involving large nonresonances AE, it is
possible that some reactions involving excited states
have smaller AE, and are therefore more important
than the ground state reaction considered in the two-
state approximation. A set of reactions which eliminates
excited ions in the primary ion beam is the reactions of
protons with rare-gas atoms. Unfortunately the rare-
gas ions™ may be formed in either *P; or *Pj states,
and the energy splitting between these states is appre-
ciable for the heavier atoms. Since two products can
be formed with different values of AE, even in the
two-state approximation, there is a duality in the calcu-
lations. It seems likely from first principles that both

2 Excepting He*, which is a %5 state.
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reactions may be possible, and that the one with the
smaller AE are most important. For the lighter rare
gases, little ambiguity exists. It is only for Kr and Xe
that serious problems are encountered.

Figure 7 shows the available experimental (%) for
the processes

H++He(1S)—Het(*S) +H(:S)+H(S) —11.0 eV

(36)

H++4Ne(1S)—Net (Py) +H(2S) —7.9 eV (57a)
Net(Py) +H(2S) —8.0 eV (57b)
Ht+Ar(*S)—Art(P) +H(S) —2.1 eV (58a)
Art(Py) +H(2S)—2.3 eV. (58b)

The f factors for these reactions are all unity in the for-
ward direction. On the same plot are shown the calcu-
lated nonresonant curves for y=+yu (Fig. 6(a) ex-
tended to higher velocities). While there is some lati-
tude in the choice of v, this is not a critical factor in the
calculations. Considering the reliability of the data, it
is seen that the theory correctly predicts the qualitative
shapes oi the ¢(v) curves, the rough absolute values of
o, and the approximate positions of the maxima. The
available data for the analogous processes

H*+Kr(*S)—Krt(Py) +H(®S) —0.4 eV (59a)
Krt(Py) +H(2S) —1.0 eV (59b)
Ht+Xe(LS)—Xet(P) +H(ES)+1.5 eV (60a)
Xet(Py) +H(S)40.2 eV (60b)
/~H (RESONANT)
Ir LT~ —(HP ANy
.:: » //,.’(n:o_n,\)f’, *“’0""::‘\\\
5 e 3
T = oW - (W
2 T
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Fi6. 7. Comparison of the experimental o(v) for reactions
(56), (57), and (58), (having respective AE’s of 11.0, 8.0, 2.2
eV) with the theoretical ¢(v) curves (extended to higher veloc-
city) from Fig. 6(b) for various AE and y=vg. The maxima oc-
cur in the correct velocity regions, the order of magnitude of ¢ is
(very roughly) correct, and the qualitative shapes of the o(v)
curves agree with theory quite well. The theoretical curves are
solid lines and the experimental curves are broken lines, the sub-
scripts 12 and 21 referring to experimental references in Table II.
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Fi1c. 8. Comparison of the experimental ¢ (v) for reactions (59)
and (60) with the theoretical ¢(v) curves taken from Fig. 6(b)
with y=vg. In the reaction with Xe there seems to be evidence
only of reaction (60a), whereas two separate experiments with Kr
seem to lead to reaction (59a) in one case, and reaction (59b) in
the other. It is difficult to say which reactions were taking place
in the experiments, so that a comparison with the theory_is
dubious.

are plotted in Fig. 8, along with the calculated non-
resonant curves for y=+y. The large difference in AE
between reactions producing Py and Pj rare-gas ions
makes application of the theory somewhat dubious.
One might conjecture the possibility of two maxima
in the ¢(v) curve. In actual experiments, the Xe data
indicate only reaction (60a), whereas in separate ex-
periments the Kr data give evidence of both reactions
(59a) and (59b). It is difficult to draw any definite
conclusions because of the scatter in the data, and the
exact reactions studied are difficult to ascertain.

The reactions of Het with the rare-gas atoms also
provide a series of related processes which can be com-
pared with our calculations. Only the processes

Het+Ne—He+Net+3.0 eV (61)
and

Het+Ar—He+Art+4-8.8 eV (62)

are considered. The data for Kr show evidence of ex-
cited states participating, and we have not included
them here. The data for reaction (61) are shown in
Fig. 9 along with the calculated curve from Fig. 6(a).
Qualitatively the agreement is very good. The data for
reaction (62) is shown in Fig. 10 along with the theo-
retical curves from Fig. 6(b). The agreement is not too
good, but the theoretical curve has the correct type of
qualitative behavior. There are data available for a
number of other nonresonant processes which do not
exhibit “normal” behavior.™ Hasted® has shown that

# J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952).
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F16. 9. Comparison of experimental o(v) (broken lines with
numbers referring to references in Table II) with theoretical
curves taken from Fig. 6(a), for reaction (61). The AL of this
process is 3 eV. There is some error in the absolute o, but the
qualitative shape of the o (v) curve is correctly predicted.

in some cases one may regard the experimental data as
a composite of several processes involving excited states
of products and reactant ions.

One excellent test of the consistency of theory and
experiment lies in a measurement of the cross sections
of reverse reactions. For example, fi/f» (the ratio of
forward to reverse reaction cross sections at the same
ion velocity) is predicted to be 4 for reaction (56) and
3 for reaction (61). There are not enough data on hand
to test these predictions. There is one interesting ex-
ample which shows the effect of the symmetry con-
siderations presented in Sec. IV. This involves the
relative cross sections of the processes,

O+ (48) +H(25)—0 (3 P) +H+, (63)

Ht+H(S)—H(S) +H* (64)
The reaction involving O has a very small AE, and
consequently has a maximum at a very low velocity.
Since O and H have nearly the same ionization po-
tentials, the cross sections for the two processes, except
for the f factor in process (63), should be roughly the
same at velocities above that for the maximum ¢ in
reaction (63). The f factor for (63) is §, so we predict
oes/oe to be 3 at moderate velocities. The data on these
processes™ in the region where the ion velocities overlap
indicate this ratio to be about 0.35. Considering the
scatter in the data, and the approximation that O and
H have identical wave functions merely because they
have identical ionization potentials, the agreement is
excellent.

3 W. L. Fite, R. I. Stebbings, D. G. Hummer, and R. T. Brack-
mann, Phys. Rev. 119, 663 (1960); D. G. Hummer, R. F. Steb-
bins, W. I.. Fite, and L. M. Branscomb, ibid. 119, 668 (1960).
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VI. LOW-VELOCITY REGION

At low velocities the orbits of the ions can no longer
be assumed rectilinear with constant velocity. We do
not intend in this section to deal in great detail with
charge exchange at low velocities. However, for certain
applications, a reasonable extrapolation procedure for
extending intermediate-velocity data to low velocities
is desirable. To do this rigorously, a strictly wave-
mechanical treatment of the collision is called for. If
the semiclassical approach is to be invoked, one should
at least use the curved, varying velocity, classical
orbits. Charge transfer probabilities should be calcu-
lated along these orbits, and o calculated from Eq. (4).
Rather than do this in detail, we adopt a simpler pro-
cedure. At large distances the potential between an
ion and an atom is the attractive polarizability-induced
dipole result (—ape/2R*), in which ap is the polari-
zability of atom B, e is the electronic charge, and R is
the distance between A+ and B. One may then show®
that the orbits as a function of 4 (at constant v) divide
into two classes, those which produce impact, and those
resulting in only grazing incidence. Although some of
the grazing collisions contribute to the charge exchange,
we shall neglect them and thus obtain only a lower
limit for . The charge exchange probability in a sym-
metric resonant process is on the average 0.5 in impact
collisions.?® But the cross section for impact collisions
is® (2we/v) (ap/u)}, in which g is the reduced mass of
the ion and atom. Thus at low velocities, the cross-
section for symmetric resonant charge exchange should
tend toward

o1.= (me/v) (an/u)*. (65)
y = | (RESONANT)
4=
33—
=
o He* Ar —e— Het+Art
-
-,
x 2
*5
7
' 12/
(Sev)
ol 1L I 11
3 4 ¢ s 107 4

V (CM/SEC)

F1c. 10. Comparison of experimental ¢(v) (broken lines with
numbers referring to references in Table II) with theoretical
curves taken from Fig. 6(b), for reaction (62). The AE of this
process is 8.8 eV. The theory is roughly in agreement with ex-
periment, the major error being in the position of the maximum.

#D. P. Stevenson and G. Gioumousis, J. Chem. Phys. 29,
294 (1958).

% The charge exchange probability may be roughly taken as
P (o, v) in a direct encounter, despite the curved orbit.
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Since ap tends to be of the order of 10-2 cm?, this has
the rough value

01=21.2X107%/ (uv) cm? (66)

with g in amu, and v in cm/sec. Thus at (u*) =10,
=107 cm? which makes ¢z somewhat smaller than
the calculated ¢’s presented in Fig. 2. At lower veloc-
ities, o7, increases more rapidly than the ¢’s in Fig. 2,
until it becomes greater. This occurs at about (ul) =
105. At lower velocities, Eq. (65) should be used. For
105 < (u't) <10°, a transition zone from intermediate
to low velocities exists.

In asymmetric nonresonant processes at low veloc-
ities, the main unknown is the probability of charge
transfer for impact collisions, P(o, v). According to
Eq. (51), this would be f/2 instead of 1/2 in the sym-
metric resonant case. However, the validity of Eq.
(51) breaks down severely as b—0. It appears that
P(o, v)<3f in strongly nonresonant processes since
experimental data carried down to (u'v) =2 to 5X10°
show no indication of a rise in ¢ with decreasing ». On
the other hand, there is evidence® from charge-exchange
processes like

Xet4-CoHy—Xe+CoHyt, (67)

in which excited electronic-vibrational levels may easily
match to produce an effective near resonance, that
o (v) roughly obeys Eq. (66) in the low-velocity region.
The behavior of nonresonant ¢ (?) curves at low veloc-
ities in atomic collisions remains unsettled. From the
evidence in regard to reaction (67), it does appear that
the near-resonant process (63) probably roughly obeys
Eq. (66) (with f=%) below about 10° cm/sec. In the
ionosphere, the most probable velocity for Of—H
collisions is about 5X10° cm/sec, which falls in the
“intermediate” velocity region.

B J. L. Franklin and F. H. Field, Proc. ASTM Mass Spectrom-
etry Conference, Chicago, Tllinois, June 1961.
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VII. CONCLUSIONS

(1) There are three ranges of ion velocity in which
different treatments of charge exchange are appropriate.
The “dividing lines”” are at approximately v= (105/u})
cm/sec and v=10% cm/sec. In the ‘“‘intermediate”
velocity region the semiclassical impact parameter
method is applicable. Most of the present work has been
confined to this velocity range.

(2) A calculationf of symmetric resonant charge-
exchange cross seéctions in the intermediate velocity
range has been made for a variety of atoms, in terms
of their ionization potentials. This can be applied to
other atoms by interpolating in terms of their ionization
potentials. The agreement of the calculations with
available experimental data is quite satisfactory. The
method is nearly equivalent to that of reference 13,
but numerical errors in that work have been corrected
here.

(3) A much more approximate calculation of asym-
metric nonresonant cross sections in the intermediate
velocity range has been made in terms of the AE of the
reaction and the “average” ionization potential of the
two atoms. The qualitative results lead to the “near
adigbatic criterion” developed previously by Massey.!s
Quantitatively, the results give the correct general
variation of ¢(v), but with some error in absolute
magnitude. In many cases experimental data repre-
senting processes involving excited states make it
difficult to compare with our (ground state) calculations.

(4) A very brief comment on the predicted ¢(v) in
the low-velocity region is presented. There are few or
no experimental data for comparison.
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